
Binary file structure for PAMGUARD detector output.

Version 4.0

D. Gillespie & M. Oswald, February 2017

1 Introduction

This document describes the binary file storage structures used by PAMGuard. Prior to 2010 the

primary storage site for PAMGUARD output data was a relational database (MS Access, MySQL,

SQLite). The function and capabilities of the binary storage system is fundamentally different to

the storage of data in the database. Most importantly, a relational database is not suitable for storage

of variable record length data (e.g. a short clip of click waveform from the click detector or the

time/amplitude/frequency contour of a dolphin whistle). Furthermore, the database interface is slow

and some databases have limited size.

The binary storage module is designed to handle any type of data, particularly data having a variable

record length. All data stored in binary files have a common overarching structure, but each

PAMGuard module contains bespoke functions for writing their particular types of data.

Although PAMGuard is written in Java, the binary data format does not use any Java specific

formats (i.e. Java serialisation). This means that PAMGuard binary files may be read by any

program capable of opening a file and reading data from it (e.g. C, C++, Matlab, R, etc.).

Binary storage is enabled in PAMGuard by adding a “Binary Storage” module from the main file

menu. Only one Binary Storage module is allowed in a PAMGuard configuration. Each PAMGuard

output stream (or PamDataBlock) that is to write binary data (which is by no means all of them)

will automatically connect to the binary store and its data will be saved. When configuring the

binary store, the user specifies a folder or directory on their computer for data output and has the

option to place each day’s data in a separate folder (these sub folders switch at midnight GMT, not

local time). The user can also specify how long each file should be. The default setting for this is

one hour.

Binary files end with .pgdf for PAMGuard Data File. A common file name format is used for all

PAMGuard module output: file names are made up from the module type, the module name and

the data stream name plus the data in a YYYYMMDD_HHMMSS time format. For example a

click detector file name might read

Click_Detector_Beaked_Whales_Clicks_20150825_032012.pgdf, i.e. a PAMGuard “Click

Detector” module, called “Beaked Whales” with an output data stream “Clicks” which was created

at 03:20:12 on 25 August, 2015.

Each pgdf file contains the following blocks of data:

1. A general header which has the same format for all data streams.

2. A module specific header (optional) which may contain module specific configuration

data.

3. Data objects. These can be of more than one type and there may be any number of them.

4. A module specific footer (perhaps giving summary data for that module over the duration

of the file)

5. A general footer with information such as the data end time. This is the same for all

modules.

Both the general and the module header contain version numbers which enable us to change the

format over time. There will always be backwards compatibility with older data types, however

new data created with new PAMGuard versions may not open with older versions. From

PAMGuard version 1.15.04 a warning will be issued if you attempt to open binary files created

with a later PAMGuard version. For example, if you collected data with version 2.00.00 (which

does not exist yet, but may use a slightly different file format) and attempt to open those files with

PAMGuard 1.15.03 uncontrolled errors will occur. If you attempt to open those files with version

1.15.04, PAMGuard may not be able to read the files, but warnings will be issued telling you to

upgrade your PAMGuard version.

Output (from PAMGuard) uses only sequential file access (rather than random access), although

other programs could of course open the files in any way they wish. This means that the file headers

contain the file start time, but not the file end time, length or number of data objects which are only

encoded in the file footer. To speed up data indexing when dealing with large data sets, the headers

and footers (items 1,2 4 and 5 in the above list) are also written into files ending with .pgdx which

have the same name as the .pgdf files. These are used for mapping and finding data when using the

PAMGuard viewer. During data analysis using the PAMGuard Viewer, a data structure known as

a “datagram” may also be added to the pgdx index file.

2 File Format

Java writes data using a big endian format irrespective of the platform it’s running on (see

http://en.wikipedia.org/wiki/Endianness). This is different to the standard format for the Windows

system which is little endian. This means that if you’re reading the data with C, you’ll have to do

a lot of byte swapping to make sense of the data coming in. Also note that Java does not support

unsigned integer values. For the purposes of this document we will use the terms int8, int16, int32

and int64 to describe the various formats (see Table 1). Strings, which may have a variable length

are generally written with the Java DataOutputStream.writeUTF() function. For standard ASCII

characters, this will be two bytes (written as an int16) giving the length of the string followed by

one byte per character. Unicode characters are also supported in this format, but are not used within

PAMGuard – for details see the JAVA Help and Wikipedia.

Table 1. Data formats used in this document and common programming languages.

This document Length in bytes Java C / C++ (32 bit platforms)

int8 1 byte char or int8_t

int16 2 short short or int16_t

int32 4 int int, long or int32_t

float 4 float float

int64 8 long long long, int64_t

double 8 double double

char[n] Fixed length string of n characters

charUTF Variable length string (see text)

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/UTF-8#Modified_UTF-8
http://en.wikipedia.org/wiki/UTF-8#Modified_UTF-8

Reading PAMGuard files with Matlab it’s relatively straight forward since you can specify

endianness as you open the file, e.g.

f = fopen(fileName, 'r', 'ieee-be.l64');

2.1 File Structures

Each pgdf file contains a series of binary objects. Every object will start with an int32 giving the

size of that object in bytes. This number includes itself in the size calculation. So it will always be

possible to skip through the file using the following pseudocode:

While not eof

objectSize = ReadInt32()

SkipForwardBytes(objectSize-4)

Next

The number immediately after the objectSize is another int32 giving the object type. This will be a

negative number for the header/footer/datagram objects, and a positive number for any data in the

file. Object identifiers used by the file management system are:

-1 = File Header

-2 = File Footer

-3 = Module header

-4 = Module footer

-5 = Datagram

The objects for the file header, footer and datagram are fixed across all data streams. Module

headers and footers have a fixed section (e.g. containing the module version number) and then a

variable length section for module specific data (e.g. detector or process configuration values such

as thresholds, FFT lengths, etc.). Data objects have a fixed header containing the time of the data

object and a variable length section which can be in any format (it being the responsibility of

individual module developers to ensure backwards compatibility should anything change).

The main data format for files is shown in Table 2.

Table 2. Data format for PAMGuard binary files.

 Header

Version

Item Format Notes

F
il

e
H

ea
d

er

0+ Length of file header in

bytes

Int32 Every object will start with this number.

0+ Object Identifier Int32 Always -1

0+ Header / general file

Version

Int32 Currently 4

0+ “PAMGUARDDATA” Char(12) Just so it’s obvious that this really is a P file

0+ PAMGUARD Version CharUTF* e.g. 1.8.00

0+ PAMGUARD Branch CharUTF* e.g. Core, Beta, etc.

0+ Data Date Int64 Data time at start of file in Java millis

0+ Analysis Date Int64 Time at which analysis started (same as

data time for real time data, or the analysis

date for data processed offline)

0+ File Start Sample Int64 Current sample number for this data stream

0+ Module type CharUTF* Module type

0+ Module Name CharUTF* Module name

0+ Stream Name CharUTF* Data stream name

0+ Extra info length Int32 Length of additional data

0+ Extra info byte[] Additional data (not currently read back in)

M
o

d
u

le
 H

ea
d

er

0+ Length in File Int32 Length of this object = 16 + object binary

length

0+ Object Identifier Int32 Always -3

0+ Module version Info Int32 Version info specific to the pamguard

module writing data to this stream. This is

more likely to change than the general file

format in the main file header and reflects

small changes in the structure of this

specific module.

0+ Object binary Length Int32 = Length in File – 16 (a bit of redundancy)

! Will be zero if there is no additional data

0+ Object Data Byte[] Length = Object binary Length. This data

will be module specific and should contain

essential configuration data such as the

frequency bands of a noise measurement,

the FFT length used for whistle detection,

etc. See Section 3 for information on

specific module headers

Data Object 1 (See Table 3 for general data structure, and Section 4 for module-specific data format)

Data Object 2 (See Table 3 for general data structure, and Section 4 for module-specific data format)

Data Object 3 (See Table 3 for general data structure, and Section 4 for module-specific data format)

etc. …

M
o

d
u

le
 f

o
o

te
r

0+ Length in File Int32 Length of this object = 12 + object binary

length

0+ Object Identifier Int32 Always -4

0+ Object binary Length Int32 = Length in File – 12 (a bit of redundancy)

! Will be zero if there is no additional data

0+ Object Data Byte[] Length = Object binary Length. See

Section 5 for information on specific

module footers

F
il

e
F

o
o

te
r

0+ Length in File Int32 48 (version <3) or 64 (version 3+)

0+ Object identifier Int32 Always -2

0+ Total number of objects

in file

Int32 Not counting header, control struct and

footer (i.e. can be = 0)

0+ Data Date Int64 Data time at end of file in Java millis

0+ Analysis Date Int64 Time at which analysis ended (same as data

time for real time)

0+ File End Sample Int64 Sample number at end of file

3+ Preceeding UID Int64 The UID of the last object in the previous

file

3+ Highest UID Int64 The UID of the last object in the file

0+ File length Long

(Int64)

Total length of the file (will be more use

when this is repeated in an index file)

0+ File End Reason Int32 Reason file ended

D
at

ag
ra

m

? Length in File Int32 24 + Length of data (see note below)

? Object Identifier Int32 Always -5

? Time Interval in seconds Int32

? Datagram format Int32 Currently 0

? Number of data points in

data gram ndp

Int32

? Number of data units in

each data point ndu

Int32

Then follows a double nested loop, the outer loop over the objects and the inner loop over the data

for each object. The outer loop does not write any data. The inner loop writes the following:

? Start Time Int64 Length of data = ndp * (8 + 8 + 4 * ndu)

? End Time Int64

? Data Units Float[]

EOF

Table 3 shows the format of data objects within a binary file. A file can contain objects of more

than one type with each object being uniquely identified by it’s object identifier. These need to be

unique within a file, but do not need to be unique across PAMGuard. Note that as of version 3,

certain variables (marked optional in table) will only be written to the binary file if they have been

set by the data object.

Table 3. General Data Structure.

Header

Version

Item Format Notes

0+ Length in File Int32 Length of this object
0+ Object Identifier Int32 Positive integer (can be 0) which must be unique

within this data stream, not across PAMGuard
0+ Time milliseconds Int64 Timestamp in milliseconds
3+ Contents of flag bitmap Int16 A set of flags indicating which optional variables

are included in the data object

2+ Time nanoseconds Int64 Additional nanosecond resolution time stamp

(optional in version 3+)
2+ Channel bitmap Int32 Channel bitmap (optional in version 3+)

3+ UID Int64 Object UID (optional)

3+ Start Sample Int64 Start sample of the object (optional)

3+ Sample Duration Int32 Duration of object in samples (optional)

4+ Frequency limits 2*Float min and max frequency limits, in that order. Either

both values are stored, or nothing is stored (i.e.

there will never be an instance of storing only the

max frequency) (optional)

4+ Millisecond Duration Float Duration of object in milliseconds (optional)

4+ Num of Time Delays

nD

Int16 Number of time delays (optional)

4+ Time Delays Float[nD] nD Float values (optional)

0+ Object binary length ‘l’ Int32 = Length in File – 20 (version < 2)

= Length in File – 32 (version 2)

= version 3+ object length cannot be equated to

Length in File because variables are only written if

the values are set.

0+ Object Data Byte[l] Length = Object binary Length. Need not be same

as Object 1. See Section 4 for information on

specific module data

3 Header formats for specific modules

3.1 LTSA Module

Table 4. LTSA Module header information

Module

Version

Item Format Notes

0+ FFT Length Int32

0+ FFT Hop Int32

0+ Interval (seconds) Int32

3.2 Noise Monitor

Table 5. Noise Monitor header information

Module

Version

Item Format Notes

1+ Number of Bands nb Int16

1+ Statistic Types Int16 Bitmap of which bands are used

1+ Low Freq Edges Float[nb] List of low frequency edges

1+ High Freq Edges Float[nb] List of high frequency edges

3.3 Whistle and Moan Detector

Table 6. Whistle and Moan Detector header information

Module

Version

Item Format Notes

1+ Delay Scale Int32

4 Data formats for specific modules

4.1 AIS Processing Module

Table 7. Format for AIS Processing. Object Identifier = 0.

Module

Version

Item Format Notes

1+ MMSI Number Int32

1+ Fill Bits Int16 Number of "fill-bits" added to complete the last six-

bit character

1+ Character Data CharUTF Contents of the M.1371 radio message using the

six-bit field type

1+ AIS Channel CharUTF Either 1 or 2, or null if not provided

4.2 Click Detector Version 0

Table 8. Format for click detector data V0.

Module

Version

Item Format Notes

0 Time millis Int64

0 Start sample Int64

0 Channel map Int32

0 Triggered channels Int32

0 Num delay measurements, nd Int16 Usually nChan*(nChan-1)/2

0 Delay measurements Float[nd]

0 Num angle measurements na Int16 (0, 1 or 2)

0 Angle measurements Float[na]

0 Duration (samples) Int16

0 WaveData Int16[][]

4.3 Click Detector Version 1 and above

Table 9. format for click detector data. Click Object Identifier = 1000.

Module

Version

Item Format Notes

1-3 Start sample Int64 Removed from here and saved to general

data structure (Table 3) version 4+

1-3 Channel map Int32 Removed from here and saved to general

data structure (Table 3) version 4+

1+ Triggered channels Int32

1+ Click Type Int16

2+ Click flags Int32

1-3 Num delay measurements nd Int16 Usually nChan*(nChan-1)/2. As of version

4, this is now saved to the general data

structure (Table 3)

1-3 Delay measurements Float[nd] only written if nd <> 0. As of version 4, this

is now saved to the general data structure

(Table 3)

1+ Num angle measurements na Int16 (0, 1 or 2)

1+ Angle measurements Float[na] only written if na <> 0

3+ Num angle measurement errors ne Int16

3+ Angle measurement errors Float[ne] only written if ne <> 0

1-3 Duration (samples) Int16 Removed from here and saved to general

data structure (Table 3) version 4+

1+ Wave Max Amplitude float Max amplitude of wave data.

1+ Then follows a double nested loop, the outer loop over the channels and the inner loop over the

duration.

WaveData Int8[][] Wavedata scaled by 127/max amplitude so it

uses full dynamic range of 8 bit data.

4.4 Clip Generator

Table 10. Format for clip generator. Clip Generator Object Identifier = 1 (store basic data only) or 2

(store basic data and wave data).

Module

Version

Item Format Notes

1 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 2+

1 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 2+

1+ Trigger (milliseconds) Int64

1 Duration (samples) Int32 Removed from here and saved to general data

structure (Table 3) version 2+

1+ Filename CharUTF

1+ Trigger name CharUTF

The following audio data is only written when the Object Identifier = 2

1+ Number of channels of data nc Int16

1+ Number of samples ns Int32 Number of samples of data/channel

1+ Scaling factor Float

1+ Then follows a double nested loop, the outer loop over the channels nc and the inner loop over the

number of samples ns.

WaveData Int8[nc][ns] Wavedata scaled by 127/max amplitude so it uses

full dynamic range of 8 bit data.

4.5 dBHt Measurement Module

Table 11. Format for dBHt Module. Object Identifier = 1.

Module

Version

Item Format Notes

1 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 2+

1 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 2+

1+ RMS Int16 RMS value scaled up by 100

1+ Zero Peak Int16 Zero peak scaled up by 100

1+ Peak Peak Int16 Peak-Peak value scaled up by 100

4.6 Difar Module

Table 12. Format for Difar module. Object Identifier = 0.

Module

Version

Item Format Notes

0-1 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 2+

0+ Clip Start (milliseconds) Int64 Start of clip, in milliseconds

0-1 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 2+

0+ Display Sample Rate Float

0+ Number of samples of

demuxed data ns

Int32

0-1 Lower Frequency Limit Float Removed from here and saved to general data

structure (Table 3) version 2+

0-1 Upper Frequency Limit Float Removed from here and saved to general data

structure (Table 3) version 2+

0+ Amplitude (dB) Float Calculated amplitude, in dB

0+ Gain Float Gain value, or -9999 if there is no gain

0+ Selected Angle Float Angle selected from the Difar-gram

0+ Selected Frequency Float Frequency selected from the Difar-gram

0+ Species Code CharUTF

1+ Tracked Group Code CharUTF

0+ Max Demux Data max Float Maximum value of the demuxed data

0+ Then follows a double nested loop, the outer loop over the 3 data types (Omni, EW and NS

respectively) and the inner loop over the number of samples ns.

Demuxed data Int16[3][ns] Demuxed data scaled by 32767/max so it uses full

dynamic range of 16 bit data.

0+ Number of Matched Units

nmu

Int16

The following are only written if the number of matched units nmu > 0.

0+ Cross Location Latitutde Float

0+ Cross Location Longitude Float

1+ Cartesian X Error Float

1+ Cartesian Y Error Float

0+ Then follows a loop over the number of matched units nmu. For each pass through the loop, the

following two data points are written:

Channel Bitmap Int16

Time (milliseconds) Int64

4.7 LTSA Module

Table 13. Format for the LTSA module. Object Identifier = 1.

Module

Version

Item Format Notes

0-1 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 2+

0 Duration Int64 Removed after version 0

0-1 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 2+

0+ End Time (milliseconds) Int64

0+ nFFT Int32

0+ Max Amplitude max Float

0+ Then follows the LTSA data, the format of which depends on the version. Version 0 scaled the data

by 32767/max and stored as Int16. Versions 1+ also scaled, but then converted to log scale and

stored as Int8. The size of the array is ½ * FFT Length (as read from the module-specific header)

Ver 0 LTSA Data Int16[.5*FFT] Data scaled by 32767/max so it uses full dynamic

range of 16 bit data.

--- or ---

Ver 1+ LTSA Data Int8[.5*FFT] Data scaled by 32767/max and then converted to log

scale

4.8 Noise Monitor

Table 14. Format for the Noise Monitor module. Object Identifier = 1.

Module

Version

Item Format Notes

0+ Number of Channels nc Int16

0+ Number of Bands nb Int16

1+ Number of Measures nm Int16 nm = 4 for Version 0

0+ Then follows a double nested loop, the outer loop over the bands nb and the inner loop over the

number of measures nm. Version 0 saved the data as float values, but Version 1+ scaled the values

up by a factor of 100 and saved as Int16

Version 0 Noise Data Float[nb][nm]

--- or ---

Version 1+ Noise Data Int16[nb][nm] Noise data scaled by 100.

4.9 Noise Band Monitor

Table 15. Format for the Noise Band Monitor module. Object Identifier = 1.

Module

Version

Item Format Notes

0-2 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 3+

0-2 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 3+

0+ RMS Int16 RMS value, scaled up by a factor of 100

0+ Zero Peak Int16 Zero Peak value, scaled up by a factor of 100

0+ Peak-Peak Int16 Peak-Peak value, scaled up by a factor of 100

2+ SEL Int16 SEL value, scaled up by a factor of 100

2+ SEL Integration Time Int16

4.10 Right Whale Edge Detector

Table 16. Format for the Right Whale Edge Detector module. Object Identifier = 0.

Module

Version

Item Format Notes

0 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 1+

0 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 1+

0+ Sound Type Int16

0+ Signal Float

0+ Noise Float

0+ Number of Slices ns Int16

0+ Then follows a loop over the number of slices ns. For each pass through the loop, the following

data points are written:

Slice Number Int16

Low Frequency Int16 Freqnecy in FFT slices. To convert to Hz, multiple

this value by (Sampling Rate / FFT Length)

Peak Frequency Int16 Freqnecy in FFT slices. To convert to Hz, multiple

this value by (Sampling Rate / FFT Length)

High Frequency Int16 Freqnecy in FFT slices. To convert to Hz, multiple

this value by (Sampling Rate / FFT Length)

Peak Amplitude Float

4.11 Whistle and Moan Detector

Table 17. Format for Whistle and Moan Detector data. Whistle/Moan Object Identifier = 2000.

Module

Version

Item Format Notes

0-1 Start sample Int64 Removed from here and saved to general data

structure (Table 3) version 2+

0-1 Channel map Int32 Removed from here and saved to general data

structure (Table 3) version 2+

0+ Number of FFT slices Int16

1+ Amplitude in dB Int16

1 Number of time delays nd Int8 Removed from here and saved to general data

structure (Table 3) version 2+

1 Time delays in samples Int16[nd] only written if nd <> 0. Removed from here and

saved to general data structure (Table 3) version

2+

0+ Then follows a double nested loop, the outer loop over the number of fft slices and the inner

loop over the number of peaks within each slice. The outer loop writes the following:

Slice Number Int32

Number of peaks Int8

 The inner loop writes the following:

Low frequency Int16 Low edge of sound in FFT bins

Peak frequency Int16 Peak (loudest) FFT bin

High frequency Int16 High edge of sound in FFT bins

Link peak from

previous slice

Int16 Link to peak in previous slice.

5 Footer formats for specific modules

5.1 Click Detector

Table 18. format for click detector footer. Note that if no click types have been defined, this

information is not written to the module footer and the Object Binary Length (from the Module Footer

section of Table 2) will equal 0.

Module

Version

Item Format Notes

1+ Number of click types nt Int16 Number of different click types

1+ Number of clicks of each type Int32[nt] Number of clicks of each different

click type

6 PAMGUARD Settings

PAMGUARD Settings are written to the binary store whenever PAMGUARD starts from the Start

menu or from the Network controller. They are not written when PAMGuard restarts due to a buffer

overflow in acquisition or when starting to process a new file during offline data analysis. Settings

are written to .psfx files. These encapsulate the current psf format used for more general settings,

but individual serialised Java objects are wrapped up in a similar way to other binary data so that

other programmes (e.g. Matlab) can at least read a list of modules.

Note that datagrams (see Table 2) are stored in the psfx files.

