A Programmers Introduction to

IAMGUARD

Pamguard Developer Training Notes
Douglas Gillespie

Developer Training HWU 2March, 2007

Introduction

Pamguard is an open source project, and as suedlogers are welcome to look at
any part of the code, comment on it, modify it, digefully improve it !

The purpose of this session is to concentrate enddvelopment of new detector
modules using the existing Pamguard infrastructWe.assume that participants in
this session have some programming experienceouts already a JAVA expert,
you'll find it easy. If you've experience of C++dn JAVA will look pretty familiar,
and you'll probably be pleased at how easy it icamparison. If you're new to
object orientated programming, then hang on inetheve hope you'll still get
something out of this session!

This tutorial is laid out in two principal parts
1. An overview of the Pamguard program structure andv ihe different
modules relate to one another and pass data betiveen
2. A walk through example of a really simple detectshich has been written
primarily to demonstrate and show off the Pamgueode structure and
components rather than to be the ultimate in sigetdction.

Documentation

The Pamguard source code is extensively documersiag) the Javadoc tool from
Sun Microsystems. This documentation may be viewsdcomments within the

source code, may appear as pop-up help from wsthine development environments
(such as Eclipse, which you will be using during tatorial) and is also available on
the web ahttp://www.pamguard.org/devdocs/index. html

Eclipse

The Eclipse integrated development environment {Iwvw.eclipse.ory and the
Java software development kit (Sun's JDK 1.5) deeady installed on the machines
you'll be using. When you launch Eclipse, it willtamatically take you to the
Pamguard project. From the Window menu, select fOperspective’ and the ‘Java
Browsing’ and your display should look somethirkglihis:

Working along the top of the top of the window, ybsee that the Pamsoft2006
‘Project’ is divided into a number of ‘Packagesicé of which contains a number of
‘Types’ — Java classes or interfaces, each of wtiattains ‘Members’ — functions of
variables. Take some time to browse around, opeanagclosing the various ‘Types’
in the main window.

To run Pamguard from within the Eclipse IDE, préls run button (solid green
triangle) in the toolbar. To debug Pamguard, pteesdebug button (icon with a
picture of a little bug) just to the left of theegn run button.

& Java Browsing - PamDataBlock.java - Eclipse SDK

Fie Edit Source

e Projects

Refactor Mavigate Search Project Run Window Help
$-0-0- [BEG-|® 4

= O (% Packages {1

+ sy »pamsoft2006 [pamguard.cvs.sourceforge.net]

BF outine 33
= @, >PamDataBlock 1.1 (ASCH +kv)
T REFERENCE_ABSOLUTE « int

AR e k"

{8} (default package)

(D pamprocess 110 (ASCI i)
¥ | O, ParRanDataBiock 1.4 (ASCH kv ¥

5 [[4] PamGuijava | 3] staightrivrophon...
A 1GUA - ssive Acoustic Monitoring GUARDianship.[]

package PamguardMVC;

naturaLifetime : int

3] UserDisplayContro...; [} RecorderControl. java M ParDataiock java X 4] PamDatalinit.java

u @import java.awt.event.ActionEvent:[]

2 Console | G bl | ot
<terminated> Javadoc Generaton ——
Generating C:\Pamguard\Doug\pamsoft2006\doc\overview-summary.html...Jj

Generating C:\Pamguard\Doug\pamsoft2006\doc\stylesheet.css...
45 warnings

°
®
®
]
@
®

Bo o

Writable: Smevtinsert | 38:15

Figure 1. The Eclipse IDE.

When writing code within Eclipse, there is an ebeatl ‘auto complete’ function.

Start typing a command and press ‘Ctrl' and thecepaar together and a list of
possible commands / classes should appear. Tafihdvhat's available in the class
you're working on, try typing the wortlhi s. (to refer to the current object) and
holding pressing ‘Ctrl-space’ and see what's thddsing auto complete will not only
tell you what commands are available, but will splegm correctly for you (Java is a
case sensitive language) and it will also insext @mport's’ you need in order to

access classes from other packages (Java impersiaifar to C header files).

Hover the mouse over almost anything and you’lbaoly get a pop-up telling you
allabout it.

Eclipse is very good at telling you if somethingasong. Any code that will not run
will be underlined and the type / package / projgdt be highlighted with a little
cross and a little red marker near the scroll bayai can sort out errors in your code
before you even try to compile and run it.

A function you may find useful as you try to undargl the code is
System.out.printin(any object) which will print tleauitput (or more specifically, the
objects toString() member function) to the Eclips@sole.

To add breakpoints for the debugger, right clickhe margin to the left of the line
you wish to pause at.

If you implement a Java interface, don't type tiaanes of all the functions yourself !
Just right click on the java file, select ‘Sourteen ‘override/implement methods...’

and you'll get a pop up box of possible functiorshvthe ones younust implement
as part of the interface already selected.

That’s all you need to know about Eclipse for tineetbeing.

Pamguard Structure (a brief Introduction)

Pamguard Data flow.

Most data within Pamguard are handled with PamDat@® and PambDataUnits.
Check out the Javadoc help for these classes, ingtart at
http ://www.pamguard.org/devdocs/PamguardMVC/PamBlatk. htmlor by looking
at the source code, which you'll find in the PanrgiVC package.

Pamguard plug-in packages

Pamguard consists of a number of plug in packageh ef which may or may not
process data, may or may not have a display and anagyay not have some user
controls or configurable options. Every plug inenits it's basic behaviour from a
class PamControlledUnit. Check out the java doc ftnis class at
http ://www.pamguard.org/devdocs/PamController/Panitded Unit. html and
follow the link the ‘how to make Pamguard plug- ins/erview.

A Pamguard plug in should be able to do absolugglything you want, including

drawing on the map, writing to the database, drgwiver spectrogram displays, etc.
without having to modify the map package, withoatvihg to modify the database
package, without having to modify the spectrograta, All the programmer has to
do is to make a class based on PamControlledUditagld one or two lines to the
PamModel class to let Pamguard know that's it'slabée and everything else will be
automatic.

The Example Package

An example plug in package ‘WorkshopDemo’ has beeitten specifically to
demonstrate how to use PamDataBlocks, PamDatadnitsmain Pamguard display
features. It consists of a relatively simple detedhat runs and ‘in band energy
detector on spectrogram data. A measure of meakdgraund noise in a given
energy band is made as new data arrive. The iastaots energy in that band is
compared to the background and a detection is mabenever the energy /
background ratio goes over threshold and then etk down again.

The signal to noise ratio of the detector may lspldyed as a plug in window on the
bottom of spectrogram displays. If a detection sde) it may be displayed as a
coloured rectangle overlaid on top of the specaondisplays and as a symbol on the
map display.

Running the detector

You should already be familiar with how to use Paard. Create an instance of the
‘Workshop Demo’ detector from the File / Add modaile.” menu. If necessary, you
will prompted to create an FFT data block to cohvaw audio data into a
spectrogram. You will also need at least one ‘UB@&play Panel on which you
should create a spectrogram display.

To view the signal to noise ratio display, righicklon the spectrogram and select
‘Settings...” go to the ‘Plug ins’ tab and check tHatorkshop demo detector’ is
selected. The panel should then be visible atolin of the spectrogram display.

To view detections as overlays on the spectrogragain right click on the
spectrogram panel and select your detector frompadpeup menu.

Play a sound file back through the PC sound sysssnper the user demonstration,
and start Pamguard detection from the ‘Detectitarft’ menu.

Detection parameters may be adjusted from the tete/ Workshop demo detector
parameters’ menu.

A Walk through the code.

The example code consists of seven main Java slass two extra lines in the
PamModel class. These are listed in the order:

WorkshopController is the main plug in class colhtrg the detector

WorkshopProcess is the main detection process (theesork)

WorkshopProcessParameters contains parameters ollingtr the detectior
process

WorkshopParametersDialog is a dialog box usedttdetection parameters

WorkshopOverlayGraphics provides graphics functiorfer displaying
detections on top of spectrogram displays

WorkshopPluinPanelProvider; provides plug in pandts the bottom of
spectrogram displays.

WorkshopSQLLogging provides functionality for loggidetections to the
Pamguard database.

The two lines added to PamModel are

mi = PamModulelnfo.registerControlledUnit("WorkshopDemo.WorkshopController",
"Workshop Demo Detector");

and
mi.addDependency(new PamDependency(DataType.FFT, "fitManager.PamFFTControl"));

The first of which tells the Pamguard Model thas tifetector is available. The second
line tells Pamguard that this detector requires BB and that the preferred source
of FFT data would be an instance of fftManager.Pan@ontrol.

WorkshopController
This is a subclass of PamControlledUnit (see Jas)ado

It creates instances of the WorkshopDetectionParasjethe WorkshopProcess and
the WorkshopPluginPanelProvider.

It overrides the PamControlledUnit function NotifgelelChanged to make the
detector aware when other modules are added orvedritom Pamguard.

It overrides the PamControlledUnit functions créasplayMenu() and

createDetetionMenu() in order to set up menu conasdor adjusting detection and
display parameters. These menu items will automdiiticoe incorporated into
Pamguards main Detection and Display menus.

It implements the interface PamSettings and rergisteth the PamSettingsManager
so that the WorkshopDetectionParameters are statedg with other Pamguard
configuration settings when Pamguard is closedrastarted.

WorkshopProcess

WorkshopProcess does the actual work of makingctletes. Since the detector may
be required to operate on several channels sinedissly, some of the functions are
contained within an inner class ChannelDetector.

WorkshopProcess is a sub class of PamProcess. BeesBralready implements the
PamObserver interface, enabling it to listen outr foew PambDataUnits.
WorkshopProcess only has to override the newDafa(ction to get these
notifications from the PamProcess superclass. WHem data arrive, the channel
number of the PamDataUnit is examined, and the piassed on to the appropriate
ChannelDetector.

WorkshopProcess uses three different PamDataBloclessource data block and two
output data blocks.

The source dataBlobk, fftDataSource, is the PanBatk the detector will subscribe
to (become an observer of) in order to get notificegs when new FFT data units are
created.

Two output data blocks are created:

1. outputDataBlock will contain detections, (if andevihthey occur).

2. backgroundDataBlock will contain information requdrby the spectrogram plug
in panels, if any are ever created.

Note that outputDataBlock is registered with themBaard system using the

addOutputDataBock() function. This will enable atReamguard modules, such as the

map and spectrogram display, to find the data hocthe system and update their

own options menus and dialogs accordingly. The gemkndDataBlock is only used

internally within this module, so there is no ne@dell the rest of Pamguard about it.

Two additional functionalities are added to outpatdBlock: setOverlayDraw uses
the WorkshopOverlayGraphics class to provide drgwimnctionality for both the
map and the spectrogram displays. setLogging tmeSViorkshopSQLLogging class
to provide functionality for logging data to therRguard database.

prepareProcess is called whenever the Pamguard |mbdages (i.e. modules are
added or removed) and whenever detection parametees adjusted in
WorkshopController. It's here that the Workshopfssc subscribes to the correct
data source and sets up the individual channettbete

PamStart is called by the Pamguard system justdeletection starts. It doesn’t do
much apart from reset some of the detection flageach ChannelDetector. Real
detection will start when the first FFT datablockies.

ChannelDetector inner class

This does the actual work of making detections aniraividual channel. Once a
detection is made, it uses the outputDataBlockréate new PambDataUnits and send
them off to the Pamguard systedate that unlessthe database is active or one of the
Pamguard displays is using this data in some way absolutely nothing will happen to
thisdata and it will very likely get deleted about a second later !

WorkshopProcessParameters

Is a simple set of parameters controlling detectioa display for this detector. They
are all put into one class like this so that thenBaardSettingsManager can store
them easily and efficiently in a serialised binditg (the ones you select when you
start up Pamguard). Any class that will be usedthy settings manager must
implement the Serializable interface. This one atsplements Cloneable so that it's
easy to copy.

WorkshopParametersDialog

Is a dialog for setting workshop parameters. léfied from the WorkshopController

menu ActionListener. It uses the PambDialog classimplement some standard

functionality such as the SourcePanel class whiokiges a quick and easy way of
generating a drop down list of available data sesrand channel numbers. This is
just an example of how dialogs are made — you @it dny other way you want

depending how much you like the various Java Layauagers.

WorkshopOverlayGraphics

Implements PanelOverlayDraw and allows detectiorise drawn on the map and on
spectrogram displays. The Pamgaurd system caralintle different data blocks, by
working through lists of ControlledUnits, PamProges and output data blocks. Our
output data block has had an overlay graphics mestte Different displays within
Pamguard will call WorkshopO verlayGraphics. Can(@@neralProjector) to see if
this particular implementation of PanelOverlayDremows how to draw on those
particular displays. This depends on the axis tygssn the GeneralProjector, which
are Latitude and Longitude for the map and Time famdjuency for the spectrogram.
The projector will turn Latitude and Longitude oimE and Frequency into screen
coordinates without the WorkshopO verlayGraphics<laving to know anything at
allabout spectrogram scales, map orientationalescetc.

If the map (or spectrogram) is set to draw Worksbemos DataUnit's, then the map
(or spectrogram) will subscribe to the data uMiien new units arrive at the map (or
spectrogram), or when the map (or spectrogram) aveslr it will call
WorkshopOverlayDraw with it's projector as an arguntn

WorkshopOverlayGraphics can work out what type odjgxtor it is (map or
spectrogram) and call the appropriate drawing fanct

WorkshopPluginPanel Provider

As the name suggests, this class provides plugspiay panels. These can currently
only be ‘plugged’ into the bottom of the spectragrdisplay, it is possible however
that other displays will support the same plugimghe future.

The WorkshopPluginPanelProvider contains an inrlasscWorkshopPluginPanel,
which extends DisplayPanel and implements PamObgerv

The WorkshopPluginPanels each show a line grapigoél to noise ratio (SNR) for
each channel, they also have fixed lines at SNRandat the value of the detection
threshold.

The various Pamgaurd displays will make as maniyiohdal WorkshopP luginPanels
as necessary and each will run independently (fstance, they may end up with
different x and y scales depending on what theypargged into)

WorkshopPluginPanel implements PamObserver and ieatdnce subscribes to the
backgroundDataBlock from workshopProcess in ordereteive updates from the
process as new SNR values are calculated for dzaimel.

Drawing on plug in panels takes place in two défamlaces

1. Each time the update position on the spectrograsplaly changes,
containerNotification() is called which informs tRduginPanel that scales or
scale offsets have changed. In this example, atlltappens is that the plot is
cleared for a few pixels to the right of the cutrencoordinate on the
spectrogram container. (Try commenting out thesesland you'll see that the
line graphs are continually drawing over themsélves

2. Each time new data arrive from the backgroundDate8lthose new data are
drawn on the line graphs. Information requiredatcalate x coordinates from
the time of the backgroundDataUnit and from thecspgrams current X
coordinate and current time is used. Previous sadue stored locally so that
lines can be joined up.

WorkshopSQL Logging

This class is used to add functionality to the n@atection outputDataBlock which
will allow data to be written to the Pamguard dasd Pamguard currently only
supports MySQL databases and MySQL is not instadliedhe teaching machines
making it difficult to demonstrate this code.

The abstract SQLLogging class has been createddéo all the unpleasantness of
writing database Structured Query Language (SQImmands from the Pamguard
user. SQLLogging will automatically create the apprate database table, and
populate that table with data in the format chdsgmthe developer. If additional table
columns are added to contain additional informaéiba later date in the development
process, those columns will get added to an eggtble. As we implement support
for other databases (such as MS Access), the g@msl@ode will add tables to those
databases and populate them in the exact same way.

SQLLogging has two main functions, the first prasdthe table definition, the
second (setTableData(...)) gets called back byddtebase manager when a new
PamDataUnit is created and requires the developeopulate the database fields.

When defining a database table format, it is pdssdset cross reference information
to other database tables. In this example, we stoederence to the most recent entry
into the GPSData table.

Each database column is defined with a specifim&r(e.g. TIMESTAMP, FLOAT,
LONG, etc.). The types of the data set in setTahtaDnust match the column types
or the write operation may fail.

Suggested Exercises

| mprove the detector:

1. Seta maximum length for detections

2. Seta minimum gap within detections, so that ifgap is small, detections merge
into one.

3. Include any parameters controlling these functidosthe dialog and the
WorkshopProcessParameters.

Use more Pamguard functionality

1. Add a counting module that appears as a side pgnélg the number of
detections in the last 10 minutes (Hint: to do ,thisopy the
ClickDetector.ClickSidePanel class and override ge¢SidePanel() function in
WorkshopController).

2. Automatically trigger recordings whenever the dieteanakes a detection. For
this to work, you will need to create at least armance of the Pamguard Sound
Recorder from the Pamguard ‘File/Add modules...” mehan add the following
code:

a) Create an inner class in the WorkshopProcess winigillements the
RecorderTrigger interface.

b) Create an instance of this class and register ith wihe class
RecorderControl using RecorderControl.registerRbEdrigger (...)

c) Whenever you have in interesting event (i.e. attifne you create a new
PamDataUnit) call RecorderControl.actionRecordeggei(...) which will
tell all sound recorders in your system that youatta record.

What will happen ?

a) When you register your recorder trigger, on eactndorecorder panel,
you should get to see a check box allowing yourtabée or disable the
trigger for that particular recorder.

b) When you call actionRecorderTrigger, all sound rédecs that have
selected triggering from your detector will start recording, taking
historical data that's been stored in a buffer adding it to the start of the
recording and then continuing that recording foe #mount of time
defined in the member functions of your class thaplemented
RecorderTrigger.

See the Click Train Detector class ClickDetectackKllrainDetector for an example

of this code.

Note that this is a rather naive example sincediniple detector will probably trigger
quite often, so youll end up recording almost awmlly. Automatic recorder
triggering is much better suited to events thatral&tively rare, such as the detection
of a sperm whale click train.

Add your own detector

We hope that Pamguard will be able to provide yatln & framework within which
you can develop your own detector modules and ladgie that you will then share
your detectors with the rest of the research conityiass we have shared ours.

The workshop demo detector took one of the Pamgeenel development team a bit
less than one day to write from scratch, so it'tkety that you will have time to
write your own detector in this training sessiooweéver, please take the opportunity
to discuss what your detector does, what it needsput and what it would provide
as output with one of the core team and we willabde to advise you on how to
proceed. (For info, the workshop demo detector & of the core team one day to
write from scratch).

Feedback

If you think the Pamguard code is total rubbish: Please tell us what you think,
your comments will be useful to us and will helptake future improve ments.

If you think the Pamguard code is not bad: Please tell us and we might even buy
you a drink.

