

A Programmers Introduction to

Pamguard Developer Training Notes

Douglas Gillespie

Developer Training HWU 29 March, 2007

Introduction

Pamguard is an open source project, and as such, developers are welcome to look at
any part of the code, comment on it, modify it, and hopefully improve it !

The purpose of this session is to concentrate on the development of new detector
modules using the existing Pamguard infrastructure. We assume that participants in
this session have some programming experience. If you’re already a JAVA expert,
you’ll find it easy. If you’ve experience of C++, then JAVA will look pretty familiar,
and you’ll probably be pleased at how easy it is in comparison. If you’re new to
object orientated programming, then hang on in there, we hope you’ll still get
something out of this session !

This tutorial is laid out in two principal parts

1. An overview of the Pamguard program structure and how the different
modules relate to one another and pass data between them.

2. A walk through example of a really simple detector, which has been written
primarily to demonstrate and show off the Pamguard core structure and
components rather than to be the ultimate in signal detection.

Documentation
The Pamguard source code is extensively documented using the Javadoc tool from
Sun Microsystems. This documentation may be viewed as comments within the
source code, may appear as pop-up help from within some development environments
(such as Eclipse, which you will be using during the tutorial) and is also available on
the web at http://www.pamguard.org/devdocs/index.html.

Eclipse
The Eclipse integrated development environment (IDE) (www.eclipse.org) and the
Java software development kit (Sun’s JDK 1.5) are already installed on the machines
you’ll be using. When you launch Eclipse, it will automatically take you to the
Pamguard project. From the Window menu, select ‘Open Perspective’ and the ‘Java
Browsing’ and your display should look something like this:

Working along the top of the top of the window, you’ll see that the Pamsoft2006
‘Project’ is divided into a number of ‘Packages’, each of which contains a number of
‘Types’ – Java classes or interfaces, each of which contains ‘Members’ – functions of
variables. Take some time to browse around, opening and closing the various ‘Types’
in the main window.

To run Pamguard from within the Eclipse IDE, press the run button (solid green
triangle) in the toolbar. To debug Pamguard, press the debug button (icon with a
picture of a little bug) just to the left of the green run button.

When writing code within Eclipse, there is an excellent ‘auto complete’ function.
Start typing a command and press ‘Ctrl’ and the space bar together and a list of
possible commands / classes should appear. To find out what’s available in the class
you’re working on, try typing the word this. (to refer to the current object) and
holding pressing ‘Ctrl-space’ and see what’s there ! Using auto complete will not only
tell you what commands are available, but will spell them correctly for you (Java is a
case sensitive language) and it will also insert any ‘import’s’ you need in order to
access classes from other packages (Java imports are similar to C header files).

Hover the mouse over almost anything and you’ll probably get a pop-up telling you
all about it.

Eclipse is very good at telling you if something is wrong. Any code that will not run
will be underlined and the type / package / project will be highlighted with a little
cross and a little red marker near the scroll bar so you can sort out errors in your code
before you even try to compile and run it.

A function you may find useful as you try to understand the code is
System.out.println(any object) which will print the output (or more specifically, the
objects toString() member function) to the Eclipse console.

To add breakpoints for the debugger, right click in the margin to the left of the line
you wish to pause at.

If you implement a Java interface, don’t type the names of all the functions yourself !
Just right click on the java file, select ‘Source, then ‘override/implement methods…’

Figure 1. The Eclipse IDE.

and you’ll get a pop up box of possible functions with the ones you must implement
as part of the interface already selected.

That’s all you need to know about Eclipse for the time being.

Pamguard Structure (a brief Introduction)

Pamguard Data flow.
Most data within Pamguard are handled with PamDataBlocks and PamDataUnits.
Check out the Javadoc help for these classes, starting at
http://www.pamguard.org/devdocs/PamguardMVC/PamDataBlock.html or by looking
at the source code, which you’ll find in the PamguardMVC package.

Pamguard plug-in packages
Pamguard consists of a number of plug in packages each of which may or may not
process data, may or may not have a display and may or may not have some user
controls or configurable options. Every plug in inherits it’s basic behaviour from a
class PamControlledUnit. Check out the java doc for this class at
http://www.pamguard.org/devdocs/PamController/PamControlledUnit.html and
follow the link the ‘how to make Pamguard plug- ins’ overview.

A Pamguard plug in should be able to do absolutely anything you want, including
drawing on the map, writing to the database, drawing over spectrogram displays, etc.
without having to modify the map package, without having to modify the database
package, without having to modify the spectrogram, etc. All the programmer has to
do is to make a class based on PamControlledUnit and add one or two lines to the
PamModel class to let Pamguard know that’s it’s available and everything else will be
automatic.

The Example Package

An example plug in package ‘WorkshopDemo’ has been written specifically to
demonstrate how to use PamDataBlocks, PamDataUnits and main Pamguard display
features. It consists of a relatively simple detector that runs and ‘in band energy
detector’ on spectrogram data. A measure of mean background noise in a given
energy band is made as new data arrive. The instantaneous energy in that band is
compared to the background and a detection is made whenever the energy /
background ratio goes over threshold and then falls back down again.

The signal to noise ratio of the detector may be displayed as a plug in window on the
bottom of spectrogram displays. If a detection is made, it may be displayed as a
coloured rectangle overlaid on top of the spectrogram displays and as a symbol on the
map display.

Running the detector
You should already be familiar with how to use Pamguard. Create an instance of the
‘Workshop Demo’ detector from the File / Add modules …’ menu. If necessary, you
will prompted to create an FFT data block to convert raw audio data into a
spectrogram. You will also need at least one ‘User Display Panel’ on which you
should create a spectrogram display.

To view the signal to noise ratio display, right click on the spectrogram and select
‘Settings…’ go to the ‘Plug ins’ tab and check that ‘Workshop demo detector’ is
selected. The panel should then be visible at the bottom of the spectrogram display.

To view detections as overlays on the spectrogram, again right click on the
spectrogram panel and select your detector from the pop-up menu.

Play a sound file back through the PC sound system, as per the user demonstration,
and start Pamguard detection from the ‘Detection / Start’ menu.

Detection parameters may be adjusted from the ‘Detection / Workshop demo detector
parameters’ menu.

A Walk through the code.
The example code consists of seven main Java classes and two extra lines in the
PamModel class. These are listed in the order:

WorkshopController is the main plug in class controlling the detector
WorkshopProcess is the main detection process (does the work)
WorkshopProcessParameters contains parameters controlling the detection

process
WorkshopParametersDialog is a dialog box used to set detection parameters
WorkshopOverlayGraphics provides graphics functions for displaying

detections on top of spectrogram displays
WorkshopPluinPanelProvider provides plug in panels for the bottom of

spectrogram displays.
WorkshopSQLLogging provides functionality for logging detections to the

Pamguard database.

The two lines added to PamModel are

mi = PamModuleInfo.registerControlledUnit("WorkshopDemo.WorkshopController",

"Workshop Demo Detector");

and
mi.addDependency(new PamDependency(DataType.FFT, "fftManager.PamFFTControl"));

The first of which tells the Pamguard Model that this detector is available. The second
line tells Pamguard that this detector requires FFT data and that the preferred source
of FFT data would be an instance of fftManager.PamFFTControl.

WorkshopController
This is a subclass of PamControlledUnit (see Javadoc)

It creates instances of the WorkshopDetectionParameters, the WorkshopProcess and
the WorkshopPluginPanelProvider.

It overrides the PamControlledUnit function NotifyModelChanged to make the
detector aware when other modules are added or removed from Pamguard.

It overrides the PamControlledUnit functions createDisplayMenu() and
createDetetionMenu() in order to set up menu commands for adjusting detection and
display parameters. These menu items will automatically be incorporated into
Pamguards main Detection and Display menus.

It implements the interface PamSettings and registers with the PamSettingsManager
so that the WorkshopDetectionParameters are stored along with other Pamguard
configuration settings when Pamguard is closed and restarted.

WorkshopProcess
WorkshopProcess does the actual work of making detections. Since the detector may
be required to operate on several channels simultaneously, some of the functions are
contained within an inner class ChannelDetector.

WorkshopProcess is a sub class of PamProcess. PamProcess already implements the
PamObserver interface, enabling it to listen out for new PamDataUnits.
WorkshopProcess only has to override the newData() function to get these
notifications from the PamProcess superclass. When new data arrive, the channel
number of the PamDataUnit is examined, and the data passed on to the appropriate
ChannelDetector.

WorkshopProcess uses three different PamDataBlocks, one source data block and two
output data blocks.

The source dataBlobk, fftDataSource, is the PamDataBlock the detector will subscribe
to (become an observer of) in order to get notifications when new FFT data units are
created.

Two output data blocks are created:
1. outputDataBlock will contain detections, (if and when they occur).
2. backgroundDataBlock will contain information required by the spectrogram plug

in panels, if any are ever created.
Note that outputDataBlock is registered with the Pamguard system using the
addOutputDataBock() function. This will enable other Pamguard modules, such as the
map and spectrogram display, to find the data bock in the system and update their
own options menus and dialogs accordingly. The backgroundDataBlock is only used
internally within this module, so there is no need to tell the rest of Pamguard about it.

Two additional functionalities are added to outputDataBlock: setOverlayDraw uses
the WorkshopOverlayGraphics class to provide drawing functionality for both the
map and the spectrogram displays. setLogging uses the WorkshopSQLLogging class
to provide functionality for logging data to the Pamguard database.

prepareProcess is called whenever the Pamguard model changes (i.e. modules are
added or removed) and whenever detection parameters are adjusted in
WorkshopController. It’s here that the WorkshopProcess subscribes to the correct
data source and sets up the individual channel detectors.

PamStart is called by the Pamguard system just before detection starts. It doesn’t do
much apart from reset some of the detection flags in each ChannelDetector. Real
detection will start when the first FFT datablock arrives.

ChannelDetector inner class
This does the actual work of making detections on an individual channel. Once a
detection is made, it uses the outputDataBlock to create new PamDataUnits and send
them off to the Pamguard system. Note that unless the database is active or one of the
Pamguard displays is using this data in some way absolutely nothing will happen to
this data and it will very likely get deleted about a second later !

WorkshopProcessParameters
Is a simple set of parameters controlling detection and display for this detector. They
are all put into one class like this so that the PamguardSettingsManager can store
them easily and efficiently in a serialised binary file (the ones you select when you
start up Pamguard). Any class that will be used by the settings manager must
implement the Serializable interface. This one also implements Cloneable so that it’s
easy to copy.

WorkshopParametersDialog
Is a dialog for setting workshop parameters. It’s called from the WorkshopController
menu ActionListener. It uses the PamDialog class to implement some standard
functionality such as the SourcePanel class which provides a quick and easy way of
generating a drop down list of available data sources and channel numbers. This is
just an example of how dialogs are made – you can do it any other way you want
depending how much you like the various Java LayoutManagers.

WorkshopOverlayGraphics
Implements PanelOverlayDraw and allows detections to be drawn on the map and on
spectrogram displays. The Pamgaurd system can find all the different data blocks, by
working through lists of ControlledUnits, PamProcesses and output data blocks. Our
output data block has had an overlay graphics member set. Different displays within
Pamguard will call WorkshopOverlayGraphics. CanDraw(GeneralProjector) to see if
this particular implementation of PanelOverlayDraw knows how to draw on those
particular displays. This depends on the axis types set in the GeneralProjector, which
are Latitude and Longitude for the map and Time and Frequency for the spectrogram.
The projector will turn Latitude and Longitude or Time and Frequency into screen
coordinates without the WorkshopOverlayGraphics class having to know anything at
all about spectrogram scales, map orientation or scales, etc.

If the map (or spectrogram) is set to draw Workshop Demos DataUnit’s, then the map
(or spectrogram) will subscribe to the data units. When new units arrive at the map (or
spectrogram), or when the map (or spectrogram) redraws, it will call
WorkshopOverlayDraw with it’s projector as an argument.

WorkshopOverlayGraphics can work out what type of projector it is (map or
spectrogram) and call the appropriate drawing function.

WorkshopPluginPanelProvider
As the name suggests, this class provides plug in display panels. These can currently
only be ‘plugged’ into the bottom of the spectrogram display, it is possible however
that other displays will support the same plug ins in the future.

The WorkshopPluginPanelProvider contains an inner class WorkshopPluginPanel,
which extends DisplayPanel and implements PamObserver.

The WorkshopPluginPanels each show a line graph of signal to noise ratio (SNR) for
each channel, they also have fixed lines at SNR = 0 and at the value of the detection
threshold.

The various Pamgaurd displays will make as many individual WorkshopPluginPanels
as necessary and each will run independently (for instance, they may end up with
different x and y scales depending on what they are plugged into)

WorkshopPluginPanel implements PamObserver and each instance subscribes to the
backgroundDataBlock from workshopProcess in order to receive updates from the
process as new SNR values are calculated for each channel.

Drawing on plug in panels takes place in two different places

1. Each time the update position on the spectrogram display changes,
containerNotification() is called which informs the PluginPanel that scales or
scale offsets have changed. In this example, all that happens is that the plot is
cleared for a few pixels to the right of the current x coordinate on the
spectrogram container. (Try commenting out these lines and you’ll see that the
line graphs are continually drawing over themselves).

2. Each time new data arrive from the backgroundDataBlock, those new data are
drawn on the line graphs. Information required to calculate x coordinates from
the time of the backgroundDataUnit and from the spectrograms current x
coordinate and current time is used. Previous values are stored locally so that
lines can be joined up.

WorkshopSQLLogging
This class is used to add functionality to the main detection outputDataBlock which
will allow data to be written to the Pamguard database. Pamguard currently only
supports MySQL databases and MySQL is not installed on the teaching machines
making it difficult to demonstrate this code.

The abstract SQLLogging class has been created to hide all the unpleasantness of
writing database Structured Query Language (SQL) commands from the Pamguard
user. SQLLogging will automatically create the appropriate database table, and
populate that table with data in the format chosen by the developer. If additional table
columns are added to contain additional information at a later date in the development
process, those columns will get added to an existing table. As we implement support
for other databases (such as MS Access), the developers code will add tables to those
databases and populate them in the exact same way.

SQLLogging has two main functions, the first provides the table definition, the
second (setTableData(…)) gets called back by the database manager when a new
PamDataUnit is created and requires the developer to populate the database fields.

When defining a database table format, it is possible to set cross reference information
to other database tables. In this example, we store a reference to the most recent entry
into the GPSData table.

Each database column is defined with a specific format (e.g. TIMESTAMP, FLOAT,
LONG, etc.). The types of the data set in setTableData must match the column types
or the write operation may fail.

Suggested Exercises
Improve the detector:
1. Set a maximum length for detections
2. Set a minimum gap within detections, so that if the gap is small, detections merge

into one.
3. Include any parameters controlling these functions to the dialog and the

WorkshopProcessParameters.

Use more Pamguard functionality
1. Add a counting module that appears as a side panel giving the number of

detections in the last 10 minutes (Hint: to do this, copy the
ClickDetector.ClickSidePanel class and override the getSidePanel() function in
WorkshopController).

2. Automatically trigger recordings whenever the detector makes a detection. For
this to work, you will need to create at least one instance of the Pamguard Sound
Recorder from the Pamguard ‘File/Add modules…’ menu, then add the following
code:

a) Create an inner class in the WorkshopProcess which implements the
RecorderTrigger interface.

b) Create an instance of this class and register it with the class
RecorderControl using RecorderControl.registerRecorderTrigger (…)

c) Whenever you have in interesting event (i.e. at the time you create a new
PamDataUnit) call RecorderControl.actionRecorderTrigger(…) which will
tell all sound recorders in your system that you want to record.

What will happen ?
a) When you register your recorder trigger, on each sound recorder panel,

you should get to see a check box allowing you to enable or disable the
trigger for that particular recorder.

b) When you call actionRecorderTrigger, all sound recorders that have
selected triggering from your detector will start a recording, taking
historical data that’s been stored in a buffer and adding it to the start of the
recording and then continuing that recording for the amount of time
defined in the member functions of your class that implemented
RecorderTrigger.

See the Click Train Detector class ClickDetector.ClickTrainDetector for an example
of this code.

Note that this is a rather naive example since this simple detector will probably trigger
quite often, so you’ll end up recording almost continually. Automatic recorder
triggering is much better suited to events that are relatively rare, such as the detection
of a sperm whale click train.

Add your own detector
We hope that Pamguard will be able to provide you with a framework within which
you can develop your own detector modules and also hope that you will then share
your detectors with the rest of the research community as we have shared ours.

The workshop demo detector took one of the Pamguard core development team a bit
less than one day to write from scratch, so it’s unlikely that you will have time to
write your own detector in this training session. However, please take the opportunity
to discuss what your detector does, what it needs as input and what it would provide
as output with one of the core team and we will be able to advise you on how to
proceed. (For info, the workshop demo detector took one of the core team one day to
write from scratch).

Feedback
If you think the Pamguard code is total rubbish: Please tell us what you think,
your comments will be useful to us and will help to make future improvements.
If you think the Pamguard code is not bad: Please tell us and we might even buy
you a drink.

